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Abstract.  

The demand for alternative forms of testing is growing. The 21st Century Initia-

tive highlighted a growing desire from industry to introduce modern workplace 

skills in the school curriculum. Complex or procedural problem solving, sys-

tems management and collaboration are in high demand in the workplace. 

However, until these skills can be tested, their impact on education is likely to 

be minimal. Serious Educational Games (SEGs) provide a format to carry out 

these kinds of complex tasks, but we do not yet know how to score gaming data 

fairly. The way games are currently scored has been influenced by games indus-

try practices which do not have to meet the same levels of accountability for ac-

curacy as formal testing. The data produced during gameplay is unlike the kinds 

of data that assessors are used to analyzing. Without a convincing argument for 

the technical adequacy of the test from an assessment perspective, we cannot 

make a serious case for their widespread use in education. This paper identifies 

key issues around the conceptualization of missingness, time and iteration af-

fecting the scoring through a case study of an educational gaming data set. It al-

so provides an initial estimation of the fairness of the game scores.     

 

 

 

 

Games provide rich evidence of learning activity, but this is not necessarily the 

same as evidence of participants’ learning [1] and we need to develop methodologies 

to identify and separate the two. Within the field of games analytics, alternative ap-

proaches to scoring cognitive skills in Serious Educational Games (SEGs), such as 

Bayesian Analysis and other types of Machine Learning have been proposed, as they 

are able to deal with large data sets, missing data, co-dependent variables and data 

that changes dynamically [2]. In Bayesian terms, ‘fairness’ is often reduced to an 

estimated overall likelihood that final derived score is accurate, but the errors may 

have occurred before that stage.  
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1.1 The Background 

Classical Test Theory established the idea that any test-derived score reflects the 

true score plus an error term [3]. Designing fair tests is very challenging. The first 

barrier to accurate assessment is the problem of difficulty of the tasks. In games ana-

lytics, ability is often assessed through a frequency tally of tasks that have been com-

pleted correctly. Such an approach requires the test designer to assume that the in-

crease in difficulty for each task was exactly the same every time. This is simply not 

possible. The leap in cognitive ability will vary from barely any increase in challenge, 

to a significant jump. ‘Difficulty’ cannot be guessed by looking at the task, but it can 

be measured as a property of the task and the player’s interaction with it.  

 

The psychometric approaches to estimate difficulty have been developed over 

many decades, but gained more widespread application in mainstream testing in the 

1990s, once computational analysis made uncovering error terms more practical. 

Rasch introduced a Log-Odds approach to modelling score data [4]. By distributing 

the scores around a mean of zero, a probability-based Log-odds estimate converts any 

raw score, which is ordered but randomly spaced data, into ordered interval data. In 

other words, the spaces between learners’ scores are no longer random. It also creates 

an estimation of difficulty and ability that is independent of the assessment tool. This 

independence criteria allows the test designer to remove or add tasks with minimal 

impact on scores, which is important for test design purposes. 

 

A value of difficulty for each item can be escalated to the model in many Bayesian 

software applications. An ordered value for these items could be established induc-

tively, in response to the observed outcomes, in much the same way as Rasch model-

ling. Alternatively, it could be deductively established, or assigned in a similar way 

once a difficulty value for an item has been anchored, or fixed, in Rasch terms. The 

Bayes models in software often instantiate those values, or update them, in response 

to observed outcomes [2]. This still does not address the concern about intervals or 

that there may be considerable bias in the original data set, though, which practition-

ers using more established Rasch approaches have experience of uncovering.   

 

Much of the bias comes from the fact that test writers are not always good at writ-

ing fair questions, and test-takers do not always behave predictably. Problems in test 

design include but are not limited to lucky guessing, poor task design and wording or 

time management issues. Once standardized scores for the difficulty of the task and 

the ability of the learner have been identified, a pattern of predicted behavior emerges. 

If Question 13 had a difficulty level of ‘+2.5’ and Student B had an ability level of 

‘+3’, we would expect her to get the answer correct. An unexpected behavior leaves a 

residual of -0.5 between the expected and observed behavior. If several test-takers 

with similar ability to B get the answer wrong, it suggests we are not measuring cog-

nitive ability, but something else. By producing Chi-Square estimates of the sum of 

all of those residuals, unexpected behavior during the testing process can be uncov-

ered, and the numerical estimation of the location and size of the problems is very 
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helpful in fixing issues. Something similar to this figure could be produced in the 

Bayes model, if it were based on interval data.  

 

This leaves the question of how to anchor values, which is more within the sphere 

of the test design. Even though psychometric techniques such as Rasch modelling 

have been applied to a wide range of testing scenarios, from multiple-choice to human 

ratings of complex skills, they do not readily adapt to gaming data. Psychometric 

measures function best with dichotomous or partial scoring of conditionally inde-

pendent variables [2]. This is not the kind of data produced in a dynamic hypertext 

online game. Most widely-used high stakes tests currently delivered online are heavi-

ly reliant on discrete questions presented in a linear form, reflecting their pen and 

paper equivalent tests. In a 2012 paper, Mislevy et al, reflected on their experience of 

scoring a simulation city management game. They observed that the total scores often 

reflected choices the learners had made, but they also represented multiple attempts, 

the use of clues or hints, wrong-turns, situationally dependent variables (such as dif-

ferent time limits) and co-dependent actions [5]. Gaming log files often contain addi-

tional para data, such as timestamps or details about iterations. This data may offer 

insight into the situationally-dependent states of the test, but there is no common 

agreement even on how these are to be conceptualized. This study looks at incorporat-

ing conceptualizations of three key factors into a Games scoring model: Dealing with 

missing data; Integrating a response time into the score; and Identifying which itera-

tion to record. This is a case study of gaming data from a game that assesses primary 

and secondary maths skills.  

 

1.2 The Data Set 

The data set was provided by Blue Duck Education, from their Manga High games 

(URL: https://www.mangahigh.com). The original log file set contained over a billion 

data points for over a million learners around the world at the time of extraction. The 

games are in a single-user and multi-player environments, directed at the 8-16 age 

range, and are aligned to British Key Stages 2 and 3 mathematics outcomes, and US 

Common Core outcomes for that age group. Students select games and carry out sim-

ple tasks using mathematical knowledge and the game mechanics. The games have a 

rich, colorful interface, with sound and animation. Interactions average around 3 

minutes. A convenience sample of the 80 players was randomly selected from the 

players with the top 90-95% activity. This group was chosen to provide the richest 

evidence of learning, while excluding possible non-targeted learners, such as the 

games developers themselves. 

 

1.3 Missing data 

The assumption that the same version of the assessment was delivered to all learn-

ers simply does not hold in games. When students are allowed to self-select them-
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selves into certain pathways of gameplay, it generates very large amounts of missing 

data. Even after significant cleaning up of the data to include the most active players 

in the data set and to record a maximum of 2 iterations per player, out of total of 

3,552 possible observations, 1,381 were missing.   

 

In the initial analysis, in estimating the difficulty of the tasks using Rasch ap-

proaches to produce interval data. The missing data was treated as not administered, 

and so ‘not presented’ rather than ‘incorrect’. It is an approach first suggested by 

Miselevy and Wu in 1996 [6] and expanded upon by Ludlow and O’leary [7]. The 

log-odd estimate of task difficulty was based on the maximum number of points for 

the games attempted. The original intention was to anchor or fix those values before 

any further analysis. However, an anomaly emerged in that some of the games had 

‘lite’ versions. The ‘lite’ version used the same game mechanics, but the mathematics 

were easier. As can be seen in Table 1, the ‘lite’ games appear to be actually as hard 

or harder than the regular versions of two games, Sigma Prime and Sundae Times.  

 

Table 1 Table comparing the initial difficulty estimates for 'lite' and 'regular' 

versions of the same game, based on data from the full sample of test-takers 

Game Name Logit score of difficulty* 

Lite Regular 

Bidmass Blaster (order of opera-

tions) 

-0.6 +0.6 

Sigma Prime (factorization with 

multiplication and division) 

+0.2 +0.2 

Pyramid Panic (geometry) -0.2 +2.8 

Sundae Times (times tables) +0.6 +0.2 

 

* Higher score represents greater challenge 

 

This is an early indication that learners’ ability to self-select themselves into the 

version they feel is appropriate may be distorting the scores. It may not be that the 

game was easier, but that the leaners who played it had lower ability. It suggests that a 

more expansive interpretation of missing data may be needed, such as basing difficul-

ty estimates on values obtained through subsets of learners with similar characteris-

tics.  

 

1.4 Response time 

Response time has traditionally been fixed, albeit somewhat arbitrarily, by impos-

ing a blanket time limit to complete the whole test. How learners manage their time 

has been seen as influential on the end result, but out-of-scope of the assessment 

model, or captured indirectly in the score. It may be harder to make such assumptions 

in game play, particularly where response time is seen as key to separating perfor-

mance in games.  
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There has been some research on response time carried out in the field of assess-

ment. Van der Linden, in a paper in 2009, pointed out that the correlation between 

time and ability is not necessarily linear [8]. What we are in fact measuring, is speed, 

which is a property of the task, the learner and the completion time. Tasks can be no 

less challenging cognitively, but simply require more stages in order to complete 

them, and, therefore, more time. It is highly plausible, for example, that the shortest 

play time with the correct outcome represents luck. Figure 1 shows the distribution of 

response times for the four band scores, 0, 1, 2 and 3. In the initial analysis, a large 

number of scores of ‘0’ have playtimes of under 10 seconds. This is most likely to be 

browsing behavior, rather than a serious attempt at the task.    

 

  

               
Figure 1 Mean distribution of response times for Sundae Times for the four 

bands, 0, 1, 2 and 3 

 

There is also considerable difference in the patterns of response time for the other 

three scoring bands (1-3). This suggests response time of 300 seconds would be fast 

for Band 1, slow for Band 2 but about average for Band 3 in this particular game. It 

appears that speed is not just a property of the test-taker, time and task, but the scor-

ing band as well. Given this variation, it may also be preferable to report speed on 

tasks with scores ≥1 as a separate dimension to performance in ability, rather than 

bring the two scores back together to create on overall score, as Van der Linden does 

at the end of his analysis [8]. 
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1.5 Iterations 

Very little has been written on the subject of iterations, but it can impact the result. 

Games encourage young leaners to repeat, and this case, one particular multi-player 

platform game, Jet Stream Riders, encouraged a very large number of iterations 

among the young players. 

  
Figure 2 Line graph showing the results of gameplay for one test-taker in one 

game, Jet Stream Riders 

 

Figure 2 shows one child’s results from over 469 iterations of gameplay of the 

game Jet Stream Riders. All four scores (0-3) are present, but it does not obviously 

show an upward trend of improvement. Taking the same child’s performance, Figure 

3 shows how the scores were distributed on a normal curve.  

 
Figure 3 Average scores for the same child over the 469 iterations of Jet 

Stream Riders 
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If the median is taken, then the child scores ‘0’. If the mean is taken, the score lies 

at Cos .72, or within Band ‘1’. If the upper quartile limit is taken, in order to eliminate 

outlying behaviors, the score lies in Band ‘2’. Finally, if the highest score is taken, the 

score is in Band ‘3’. Taking just the highest score for all players of this particular 

game produced relatively stable Infit and Outfit scores of 1.16 and .95 respectively for 

this task. Whether this conceptualization is desirable may need to be decided based on 

other aims of the game scoring process, such as value judgments on whether perse-

verance is to be rewarded.  

 

The results of this preliminary study show that there is a stability in this gaming 

data set, with overall Infit and Outfit scores of 1.04 and 0.88 respectively from the 

initial analysis. However, further investigation may well show that these statistics are 

sensitive to changes in the scoring design. Some problems may also need to be ad-

dressed, not by the mathematical model, but by changes in the rules, such as restrict-

ing the number of iterations, or not allowing browsing behaviors. There is considera-

ble collaborative work to be done to bring the communities of games designers and 

assessors together.     

 

This project is part of a PhD Thesis in Web Science, funded by a Digital Economy 

Network grant, within the Web Science Doctoral Training College at the University 

of Southampton. It is an interdisciplinary study co-supervised by the Education De-

partment and the Electronics and Computer Science Department.  
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